
LLNL-CONF-635882

Design and Optimization of a
Metagenomics Analysis
Workflow for NVRAM

S. Ames, J. Allen, D. Hysom, S. Lloyd, M.
Gokhale

April 30, 2013

IPDPS 14
Phoenix, AZ, United States
May 19, 2014 through May 23, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Design and Optimization of a Metagenomics Analysis
Workflow for NVRAM

Sasha Ames, Jonathan E. Allen, David A. Hysom, G. Scott Lloyd and Maya B. Gokhale
Lawrence Livermore National Laboratory

Contact: ames4@llnl.gov

ABSTRACT
Metagenomic analysis, the study of microbial communities
found in environmental samples, presents considerable chal-
lenges in quantity of data and computational cost. We
present a novel metagenomic analysis pipeline that leverages
emerging large address space compute nodes with NVRAM
to hold a searchable, memory-mapped “k-mer” database of
all known genomes and their taxonomic lineage. We de-
scribe challenges to creating the many hundred gigabytes-
sized databases and describe database organization opti-
mizations that enable our Livermore Metagenomic Analysis
Toolkit (LMAT) software to effectively query the k-mer key-
value store, which resides in high performance flash storage,
as if fully in memory.

To make database creation tractable, we have designed, im-
plemented, and evaluated an optimized ingest pipeline. To
optimize query performance for the database, we present a
two-level index scheme that yields speedups of 8.4 × −74×
over a conventional hash table index. LMAT, including the
ingest pipeline, is available as open source at SourceForge.

1. INTRODUCTION
Metagenomics is concerned with characterizing and analyz-
ing microbial communities present in diverse natural envi-
ronments. Metagenomics sequencing has emerged as a pow-
erful genetic survey tool used in research for generating a
far more unbiased and detailed description of a biological
sample than has ever been possible. It is the nature of a
metagemonic input set that the organisms it contains are
diverse and largely unknown, and analysis of such data sets
represents a data intensive analysis problem that challenges
conventional computing approaches. Present approaches to
metagenomic analysis rely on sequence alignment tools that
match each genetic fragment (“read”) to a part of each ref-
erence sequence and report a summary of the top reference
matches. However, with rapidly growing sequencer through-
put, alignment-based approaches are facing severe scaling
limitations, even with high CPU core counts. To enable

near real-time analysis of metagenomic datasets at field sites
co-located with the sequencer, we have developed a novel
alignment-free approach, the Livermore Metagenomic Anal-
ysis Toolkit (LMAT) that exploits large (persistent) mem-
ory to store a searchable database of k-mers, all k-length
sequences from a reference set of genomes [2]. By trans-
ferring the computational load to an offline database gen-
eration phase, we transform the analysis problem to paral-
lel search of a read-only database. Our approach has been
shown to perform favorably in accuracy and speed to com-
peting alignment-based techniques [2]. The source code is
available on Sourceforge ([1]).

Our approach leverages emerging large address space com-
pute nodes with NVRAM to hold a searchable k-mer database
of all known genomes and their taxonomic lineage. The
database resides in a file in NVRAM, which is mapped into
the address space of the application, allowing the application
to access data structures directly as if in memory. This ap-
proach anticipates future memory hierarchies incorporating
NVRAM as a high capacity, high latency last-level mem-
ory. We show that even with today’s NAND flash arrays,
we achieve excellent query processing rates. In this paper we
describe the workflow pipeline to generate the searchable k-
mer database; evaluate database organization optimizations;
analyze speed performance for database query using real
metagenomic query sets. The full LMAT database reaches
almost 500GB in size. It is organized as a key-value store
in which the data stored with each k-mer key records alter-
native taxonomic lineage for the k-mer. To make database
creation tractable for our reference database, we parallelize
generating the k-mers of reference genomes. We evaluate al-
ternative key-value store organizations, and have developed
a two level index optimized for Flash storage. During query,
the database is memory-mapped into the address space of
the query process, and we use a custom mmap handler op-
timized for data intensive applications [17]. The optimized
index gives a 8.4×−74× speedup over a conventional hash
table index. The speed performance of our approach is eval-
uated using 0.5-2.5 GB query sets.

Our contributions are as follows:

• demonstrate a scalable new approach to generating
large, memory-mapped searchable k-mer databases, start-
ing from NCBI reference genome sets,

• evaluate alternative approaches to the database ingest

pipeline, including parallelization on a conventional
cluster and on a single large memory node,

• design a two-level index data structure uniquely tuned
to flash array access,

• demonstrate speed improvement on query of more than
an order of magnitude over conventional key-value store
organizations.

2. LMAT SEARCH AND CLASSIFICATION
LMAT identifies organisms in a metagenomic sample by
matching k-mers in the reads in the sample with k-mers in
a searchable database. If a set of k-mers from a read match
k-mers from a particular reference sequence, then there is
some likelihood that the read may come from the species
or strain of the reference. On the other hand, a read may
contain k-mers that map to a diverse group of organisms
that have a common ancestor in the biological taxonomy at
the level of genus, family, or higher. The LMAT classifica-
tion algorithm is rank-flexible, attempting to classify a read
at the lowest level possible of the taxonomy tree. LMAT
classification uses threshold values for the classifier, so there
must be a strong enough signal for a particular match to
make a “call” for a particular taxonomy. For rank flexibil-
ity, for instance, if there is a match for a particular strain
(lowest rank) but it is not enough to pass the threshold, it
might be that there is enough for a species (next rank up the
NCBI taxonomy hierarchy) level match, and so on. LMAT
uses a searchable index of k-mers that map to constituent
taxonomic identifiers for the organisms and higher common
ranks when appropriate.

Other approaches that map reads to reference sequences us-
ing k-mers rely on a small subset of k-mers to represent the
database in order to minimize the challenges of searching
a large reference database. A unique feature of LMAT is
its use of all k-mers in the reference database to improve
detection sensitivity. Since the number of k-mers in the cur-
rent reference database is approaching 20 billion and will
continue to grow as new organisms are sequenced, new ap-
proaches are needed to efficiently manage and retrieve in-
formation from the reference database. One key challenge
is to identify, store and manage the billions of k-mers in a
way that avoids duplicates, allows for adding genomes, and
can be written out to store for use in subsequent workload
stages. The second challenge is choosing an index struc-
ture that works well on flash storage. For LMAT to achieve
useful performance, it must make use of multicore archi-
tectures, in which the application must process many in-
put reads concurrently for classification. Flash has orders
of magnitude higher latency than DRAM, requiring the de-
sign of latency-tolerant algorithms and data structures for
k-mer search. Since our classification algorithm has compute
intensive phases in addition to the data-intensive database
lookups, the goal is to gain latency-hiding between the two
parts of the query application process by running a large
workload of query processes in parallel, ideally resulting in
higher LMAT application throughput.

This paper focuses on speed performance and scalability as-
pects of the LMAT workflow. Discussion of accuracy and
in depth comparison with other techniques for metagenomic
sample analysis can be found in [2]. In developing LMAT, we

experimented with several values of k in the range 17 . . . 21
to maximize classification accuracy and performance. In this
paper we report performance primarily with 20-mers, which
were previously found to support accurate classification.

The following sections discuss the workflow to create the
index, the optimizations to several workflow components,
and the evaluation of those optimizations.

3. DATABASE PREPARATION
The LMAT classifier depends on a searchable k-mer database.
In our implementation, the k-mer database is a key-value
store in which the key is a 64-bit binary encoded form of
the k-mer and the value is the list of genomes and/or higher
level taxonomy classification (strain, species, genus, family,
. . ..) that contain the k-mer, called the taxonomy identifiers
(tax IDs). Figures 1(a) and 1(b) contrast two workflows
we have used for generating the database. The first phase
is k-mer extraction, performed by the program Jellylist in
Figure 1(a) and K-mer Prefix Counter in Figure 1(b). The
k-mer extraction phase takes a preprocessed genome refer-
ence database and enumerates all the canonical k-mers. In
canonical form, a k-mer and its reverse complement1 are
considered equivalent, and the k-mer with a lower value in-
ternal representation (64-bit ID) is used.

Then, each extracted k-mer is annotated with a list of tax
IDs that contain the k-mer. Tax IDs are stored as 32-bit in-
tegers. The two workflows accomplish this task in different
ways. In the first workflow (Figure 1(a)), the output is so
large that it must be partitioned for the Taxonomy Anno-
tation phase. In the optimized workflow of Figure 1(b), the
output of k-mer extraction is already partitioned. The par-
titioned k-mer sets are annotated with the taxonomy lists.
Finally, the annotated k-mers are indexed into a searchable
form. The final phase of both workflows reduces the many
partitions into one single output database.

The workflow makes use of large and fast scratch storage for
the intermediate storage of all the files generated by the first
two phases. These files can be stored on any conventional
file system, though use of a parallel file system is suitable
for the workflow stages running parallel tasks. The k-mer
extraction phase produces output file(s) roughly 10 times
larger than the original input files. An equivalent amount
of storage is needed for the partitions, given the workflow in
Figure 1(a) where we have a single output from the k-mer
extraction phase. Output from the taxonomy annotation
phase takes 2.15 times more storage than its input (for k =
20). For example, a 19 GB input set, produces 190 GB
of files with the extracted k-mers and genome identifiers.
Partitioning requires an additional 190 GB. The data size
after taxonomy annotation is 400 GB. In total, close to 800
GB of storage is needed for the full reference set.

3.1 K-mer extraction
The software program Jellylist was initially selected to do
the k-mer extraction phase since it was an existing k-mer
analysis tool with an early software variant, Jellyfish [12],

1The reverse complement is the reverse of the k-length se-
quence with each nucleic acid base replaced by its comple-
ment: A ↔ T and C ↔ G.

Jellylist
Partition
K-mer
data

Taxonomy
Annotation

Index
Creation

(hash table)Input:
Genome

Reference
Data

Output:
Memory
mapped
database

Runtime:
48+ hours

Runtime:
4 hours

Runtime:
1 hour

Runtime:
3.5 hours

K-mer
Extraction

(a) Original Ingest

K-mer
Prefix

Counter

Taxonomy
Annotation

Index
Creation

(two-level)

Input:
Genome

Reference
Data

Output:
Memory
mapped
database

Runtime:
8 hours

Runtime:
1 hour

Runtime:
1.5 hours

K-mer
Extraction

(b) Optimized Ingest

Memory
mapped
database

DNA
Sequencer

Environmental
Sample

LMAT
Classifier

Input:
metagenome
reads (query)

Output:
Classified

reads

(c) Query

Figure 1: LMAT ingest and query workflows. The original workflow has four stages. The optimized LMAT
workflow improves the runtimes of the k-mer extraction (K-mer Prefix Counter vs. Jellylist), database ingest
stages, and removes the partitioning stage. Example times assume 19 GB reference sequence input.

which was previously shown to enable fast multithreaded k-
mer counting. (The Jellylist code is not published but freely
available from the Jellyfish authors.) Jellylist uses lock-free
hashing techniques and creates lists of k-mers and genome
identifiers using an in-memory data structure. Thus, the
application requires a large shared-memory node to process
a set of genome reference sequences. Jellylist includes the
feature of storing positions each k-mer within the containing
genomes. Although we chose not to use this feature, as the
positions are not required for LMAT, the feature remains a
key part of the application and may impact its performance
even when not in use. Unfortunately, Jellylist processing re-
sulted in excessively long runtimes (including the final writ-
ing of k-mers to storage). For instance, to extract 20-mers
from a 19 GB input reference set took close to 48 hours on a
single server with 1 TB DRAM. The addition of the human
genome to that input set, 3 additional GiB, added unfore-
seen complexity, and the run could not complete within our
seven day allocation on the server.

The first approach we considered to addressing the problem
of intractable Jellylist runtimes was to partition the input
reference set of sequences. This approach is problematic
as well. Ultimately the partitions need to be merged. The
challenge in the merge is accounting for the k-mers extracted
from several genomes in multiple partitions. For these re-
peated k-mers, the merge step must combine the lists of
constituent genome identifiers. Moreover, all partitions re-
quire sorting in order to facilitate efficient merging. We
went through this process to merge the set of k-mers ex-
tracted from a human genome with those extracted from
our microbial genome data set. The process was long, cum-
bersome and error prone, making use of both in-core and
out-of-core merge steps, and was eventually eliminated from
the pipeline.

We instead design an alternative approach to partitioning.
Rather than partitioning the input sequences, we partition
the k-mers as they are extracted. We call our application
kmerPrefixCounter. Given that nucleic acids are comprised
of four bases, every k-mer has a “prefix” of n bases, so there
are 4n possible prefixes. We can pick the desired number
of partitions. Based on picking a prefix length n we can
determine the number of partitions that fits our resources.
For instance if we want to have four partitions, n = 1, a
each partition extracts k-mers of a particular initial base (A,
C, G, T). Each process works independently and no inter-
process communication is required. For sixteen partitions,

the prefixes are AA, AC . . . TT. All partitions’ processes
see the same sequence information, but based on the prefix,
each process chooses whether or not to include a particular
extracted k-mer within its own k-mer set. The output files
do not require additional sorting and merging because each
partition has a non-overlapping set of k-mers.

Our implementation of kmerPrefixCounter uses C++ STL
data structures, the std::map for recording the k-mers (one
per partition) and the gnu hash set for managing each list of
genome identifiers per k-mer. It is a very simple, straightfor-
ward implementation, albeit does not make optimal use of
memory. The execution of kmerPrefixCounter creates a set
of output files with each file being already sorted by k-mer
key, as enabled by the use of the std::map data structure.
The sorted output becomes important because it needed to
create the two-level index, which is optimized for sorted in-
put. Sorted output is also useful because it facilitates merges
of sorted sequences if the user chooses to add extracted k-
mers from an additional set of organisms at a later date.

KmerPrefixCounter has two modes of operation. In “in-
dependent job” mode every partition is started as its own
single-threaded process with the input reference sequence
file, the prefix value n, and the partition ID identifies when
prefix the process handles. All partitions must read the en-
tire reference sequence file and parse individual k-mers.

In MPI “cluster” mode, the primary rank iteratively reads
and broadcasts each sequences in the file. In essence, this
shifts the cost of the file I/O performed by all processes in
the independent job mode to the MPI broadcast operation.
Each MPI task extracts individual k-mers from sequence
data.

In practice, independent job mode allows for flexibility in
using job schedulers within our cluster computing systems,
as it is potentially more difficult to obtain a single allocation
for a large group of nodes simultaneously rather than many
single node allocations. Our evaluation shows results of both
the independent job and MPI modes of kmerPrefixCounter.

3.2 Taxonomic Annotation
The output from k-mer extractions contains k-mers, each
with a list of genome identifiers. The genome identifiers re-
fer to individual sequences rather than particular organisms.
In the taxonomic annotation process, we map the genomes
to an NCBI taxonomy identifier for the organism. At the

TAGCGTTA 51644

1111001100101110

Input K-Mer

111100

001010

111110

Integer Key

First Level - Table

Second Level
Lists Value data: taxonomy information

0

0

000001
001010
010011

n

000101

m

offset into
second-level3

64 48 0
count

48 0

...0111110

suffix offset to
value storage

64

000011

Figure 2: Design of the two-level index. Each k-mer
is split. The prefix is the index of the first level.
Lists of the suffixes with offsets into the Value Data
store are in the second level.

level of the genome, this is typically a species or strain iden-
tification. K-mers that map to more than one organism have
a common taxonomic ancestor within the NCBI taxonomy
tree. The second part of the taxonomy annotation computes
the lowest common ancestor (LCA). The procedure is em-
barrassingly parallel, as it is performed on a per-k-mer basis.
We process each partition of extracted k-mers and their cor-
responding genome lists as separate processes. Each writes
its own output file. Additionally, this stage allows us to col-
lect counts of total k-mers and taxonomy identifiers for use
in sizing the final indexed database.

3.3 Index Creation
A primary requirement to running the LMAT classification
application is efficient k-mer lookup. The k-mer database
index must be organized for very fast lookup as opposed
to insert or delete. For the purpose of classification only,
the indices will not be updated, as they serve in a write-
once, read-many usage model. Thus, use of an off-the-shelf
RDBMS database package for the index is not appropriate,
and other available key-value stores incur unnecessary trans-
actional overhead.

Given that our lookup requirement for LMAT does not in-
clude range queries, we determined that a hash table would
be an appropriate fit. The keys specific to our applica-
tion are 64-bit integer values: the encoded k-mer. To begin
rapid prototyping for the LMAT classifier, we selected the
gnu hash map data structure. We performed some simple
performance tests of the data structure in comparison with
Google’s sparsehash and C++ std::map (a “baseline” for a
tree-based map for a point of comparison) and found that
gnu hash had the best performance. We manage the storage
of the taxonomy identifier lists in a byte array, written to
in an append-only “log-like” manner; thus, their storage is
compact without additional compression. Offsets into this
byte array are stored as the values of the hash map.

The hash table is built in a persistent heap as a memory-
mapped file. The use of memory map presents a convenient

programming abstraction for performing out-of core data ac-
cess without the overhead of application buffer management
and mix of standard I/O and in-core data structure access.
To enable the index to be persistent after ingest and be
used afterward for classification, we configure gnu hash with
a custom memory allocator that is backed by storage. Pre-
vious work at LLNL, “perm-je” has modified the Jemalloc
memory management library [6] to enable memory alloca-
tion from an address range memory-mapped to a file residing
on a storage device. Jemalloc is a drop-in replacement for
regular malloc routines for allocating memory. Our modi-
fication to jemalloc allows for an additional step to specify
the database filename (jemalloc memory-maps to temporary
files). Our “perm-je” library is available as open source and
distributed with LMAT at SourceForge.

To meet the goal of running LMAT using flash storage for in-
dexing, it became necessary to consider an alternative index
to gnu hash. Our preliminary work with the index showed
poor query performance when reading the data structure
from flash. In designing such an index, we focus on the
goals of improving page reuse and locality of access.

We have collected some statistics on our use of the gnu hash
table. The maximum bucket count hard coded into gnu
hash is 4,294,967,291. Thus, on average, regardless of hash
function, the chain length for each lookup is 2.15 for the
9.21 billion items of a 19 GB reference sequence set. The
chaining becomes problematic when the hash table resides
on flash storage: each pointer dereference to traverse the
linked lists potentially forces additional page faults. For
this reason, we focus on improving locality when handling
collisions.

Our alternative data structure to the gnu hash map is a
“two-level” index. For this approach, we split the 64-bit k-
mer into a prefix and suffix. Note that this “prefix” is differ-
ent from those used in the discussion of kmerPrefixCounter.
The first level maps every prefix into an array of the suffixes
stored in the second level. This structure resembles a hash
table in that the first level is similar to the hash table struc-
ture; in our case the “hash function” returns the prefix of the
key, which is the index into the first-level array. The sec-
ond level manages the collisions that occur — as we expect
many matching prefixes — by maintaining array-based lists
containing the suffix. These lists are maintained in sorted
order so they can be quickly binary searched during lookup
operations. It is unnecessary to store the entire key (the en-
coded k-mer) because once the prefix is used within the first
level lookup, it is no longer needed. In contrast, chaining
within a hash table stores the entire key.

Figure 2 illustrates the structure of the index, where n is the
length of the first-level array (corresponding to selected k-
mer prefix size), and m is the length of the second-level array
of lists. Note that m is equal to the total number of k-mers
in the database. In our implementation of the index, both
the first and second levels are 64-bit integer arrays. The
boxes at the bottom of each table show the fields within
each 64-bit value from each of the tables. For each 64-bit
value in the first-level array, the 16 most-significant bits store
the count of items in the corresponding second-level list of
suffixes for k-mers that share that common prefix (the index

into the first-level array). The remaining least-significant
48 bits store the offset into the second level, pointing to
the sorted list of k-mer suffixes. In the second-level array,
the k-mer suffix is stored in the most-significant 16 bits of
the 64-bit value. The remaining 48 bits of the second-level
array value are used to store the offset to find the taxonomy
identifier lists in the value data array, equivalent to the gnu
hash map value field.

Note that this data structure is specific for integer keys.
While we apply it in this work to integer-encoded k-mers,
it can potentially be applied to other integer-specific work-
loads. It is not suitable for general purpose key-value stor-
age that typically performs a hash-function calculation on
variable-length strings of ascii characters.

An important determination needed to use the index is how
to split the input k-mer between the first and second level.
The split parameter determines both the size of the the first
level table and the maximum length of each second level
list. The average length of each list and distribution of such
lengths depends on the particular integer key data indexed.
Our goals in considering specific split parameter are to: (1)
try to keep the second level lists on a single page of mem-
ory so as to incur fewer page faults; (2) keep the first level
table size small enough to remain cached in DRAM. An ad-
ditional consideration (implementation specific) is that the
16-bit count field limits second level list lengths to integers of
that size. Thus, we must balance the tradeoff of optimizing
for each of these goals.

We select split factors where the prefix sizes range from 24
to 31 bits with suffixes ranging from 16 down to 9 bits re-
spectively, each pair a total of 40 bits for the k-mer length of
20 base pairs. At one extreme of these parameters, we have
a 128 MB table for 224 possible k-mer prefixes with maxi-
mum second level list lengths of 216 − 1 spanning up to 128
4K pages for the longest lists. Note that this configuration
fits the constraint of the largest possible list length based
on a 16-bit integer count value. At the other extreme of the
range, a 9-bit suffix guarantees that the maximum list fits
on a 4K page, given 512 64-bit values. However, the first
level is 16 GB (231 prefixes) using this configuration, which
may not remain fully in the mmap handler’s buffer cache
when memory is limited. Our evaluation considers LMAT
classification performance given this range of settings.

The ingest procedure for the two-level index assumes that in-
put data is sorted by the k-mer key. The output of the kmer-
PrefixCounter code produces sorted k-mers, which facilitates
this process in our workflow. This enables the second level
list values to be added in sorted order, so no additional sort-
ing is needed. The ingest procedure is very straightforward.
The ingest code initializes the first-level array to zero val-
ues. The second-level is written to in a log-like fashion, so
the procedure must maintain and increment the offset point-
ing to the last value written. For each k-mer in the input
set, the procedure first splits the k-mer into the prefix and
suffix. For the first-level, it checks if the value in the array
for that prefix has been written. If not, it writes the current
second-level last value offset to the lower 48 bits of the value
and sets the count field to an initial value of 1 for that pre-
fix. If the location in the array has been written, the count

Input size (GB)
0.84 1.5 3.5

R
un

tim
e

(s
)

50000

10000

1000

100

10

23
79

.5
9

40
31 11

42
9

78
4.

55

15
12

.4
8

39
10

31
7 58

0 14
41

43
5.

66 78
6

17
01

.8
6

12
12

0

18
27

9

47
57

0

kPC−4
kPC−16
kPC−64a
kPC−64b
Jellylist

Application−Ref. Database

Figure 3: Performance of methods for k-mer ex-
traction using 1 TB node(s). kpC-64a (kmerPre-
fixCounter, 64 concurrent partitions) ran on two
nodes (32 processes on each) and kPC-64b ran on a
single node with hyperthreading enabled (80 hard-
ware threads). All other series ran on single node
with hyperthreading disabled. Jellylist set to use
32 threads. The sizes on the x-axis represent col-
lections with 500, 1000 and 2000 individual genome
sequences respectively.

Input size GB Partitions Runtime (seconds)

3.5 256 600
13 256 2160
19 256 5480
22 256 out of 1024 2604
55 256 out of 1024 7020

Table 1: kmerPrefixCounter execution time on a
compute cluster using MPI mode. Runs used 256
nodes regardless of the number of requested parti-
tions. In the cases where 1024 partitions were re-
quested, the first 256 partitions (AAAAA-ATTTT)
were run on the cluster.

is incremented, but the offset into the second level for that
particular prefix has already been set. For each input k-mer,
the suffix and offset to taxonomy storage are written to the
second-level array at that last-value offset, maintaining the
sorted order of suffixes for common prefixes as they are writ-
ten. To additionally contrast the two-level index with gnu
hash (considering ingest), despite the disadvantages of gnu
hash that we observe, an advantage of the gnu hash index
is that it accepts unsorted k-mer input to build the index.

4. EVALUATION
Our evaluation of the LMAT workflow considers three as-
pects. First, we examine the performance of our cluster
k-mer extraction application in comparison to the Jellylist
application. Second we profile the build of the index, com-
paring the performance of gnu hash map with the two-level
approach. Third, we compare the two index techniques when
used for query in LMAT classification and examine the per-
formance of the two-level index under varying amounts of
memory and configurations.

Single node measurements are run on a 4 socket 2 GHz In-
tel E7 4850 CPU with 1TB of memory. Index creation and
database query experiments use this hardware. K-mer ex-
traction is evaluated on large memory nodes and on conven-
tional cluster nodes. The latter are Infiniband-connected
2.6 GHz Intel E5-2670 CPUs with 32 GB of DRAM each.
All query experiments use PCIe attached flash memory. We
use a software RAID with 2 FusionIO 1.2 TB ioDrive cards.
Our experiments run in a standard supercomputing center
environment in which input and output files are read from
or written to a 1.5 PB Lustre file system.

4.1 K-mer extraction
Figure 3 plots the runtime for k-mer extraction comparing
Jellylist with the kmerPrefixCounter (labeled kPC). These
kmerPrefixCounter runs do not use MPI; thus, each parti-
tion runs as its own process and opens the same input file
as all others. We consider three input sizes (X-axis) and for
kmerPrefixCounter, four configurations. The three input
sizes represent collections with 500, 1000 and 2000 individ-
ual genome sequences respectively. The number following
the label indicates the number of partitions run concurrently.
For 64 partitions, we consider two variations: (kPC-64a) use
of two nodes with all processes running on physical cores or
(kPc-64b) use of a single node with hyperthreading enabled;
with hyperthreading the 64 processes run concurrently on
the 80 available hardware threads (with 40 underlying phys-
ical cores). The results show that using the kPc-64b con-
figuration (single node with hyperthreading) incurs an 18%
performance penalty (for the largest workload shown) over
kPc-64a, which uses 64 CPUs (on two nodes) without hyper-
threading. In other words, using a CPU per process reduces
runtime by only 18% over the use of the hardware threads
with 40 physical cores.

In all, we observe a range of speedups of 4.17× for kmerPre-
fixCounter over Jellylist when using four processes and 27×
when using 64 processes and hyperthreading enabled. Ex-
perience with Jellylist has shown that hyperthreading does
not improve the application’s performance.

A single 1 TB node has sufficient memory to extract k-mers
from a 22 GB input set, including the human genome. The
runtime took 8.12 hours to complete using 64 partitions with
hyperthreading enabled.

Use of a cluster allows for a greater partitioning factor than
on a single large memory node. For input data sizes up
to 19 GB (does not include human genome), we run with
256 partitions on 256 nodes. All these runs complete in un-
der an hour, as shown in Table 1. For the larger two sizes
shown, 22 and 55 GB, we could not complete runs with
256 partitions because the partitions that required the most
memory would not fit on the 32 GB node. Instead, we in-
crease to 1024 partitions. Timings are shown for subsets of
the entire workload2 with 256 nodes (one quarter). These
took the first (AAAAA - ATTTT) partitions. These parti-
tions have the largest numbers of k-mers and taxonomy IDs,
thus requiring the most memory and runtime. We also ran
the 55GB dataset with the last (TTTTT) partition, which

2Due to cluster job scheduling policies, it was not possible
to reserve a single 1024 node allocation, and therefore we
queued several smaller allocations independently.

T
im

e
to

 p
ro

ce
ss

 (
s)

0

100

200

300

400

500

Input file number

0 5 10 15 20 25 30 35 40

gnu−hash/ramdisk
two−level/ramdisk
two−level/flash

Indexing method / storage

Figure 4: Comparison of indexing approaches mea-
suring ingest timings. For the two-level index we
consider performance of both ramdisk and flash.
Gnu hash performance on flash was too poor for
consideration. Each point on the x-axis represents
a roughly equal number of k-mers along the x-axis.

generated 193 thousand k-mers vs 109 million for the first
(AAAAA) partition. Its runtime was 99 minutes, only 18
minutes shorter than the first, indicating that for this parti-
tioning, I/O and parsing dominated the runtime rather than
adding k-mers to the map data structure and writing out the
final list of k-mers and taxonomy IDs.

For practical reasons, we found it most expedient to run
partitions that required more than 32 GB on large memory
nodes and the remaining partitions as independent jobs on
the conventional cluster. This entire process takes about 8
hours.

4.2 Index Creation
We discuss the performance of the ingest process that builds
the index from files containing k-mers and taxonomy infor-
mation, comparing use of gnu hash with the two-level index.
Figure 4 shows timings of the processing of input files on a
1 TB node. For this experiment we use input data derived
from 22 GB data set, which includes microbial organisms
and a human genome. Each partition (x-axis) is a single file,
containing roughly the same number of k-mers, and they are
processed sequentially. The ingest application measures the
time to process each input file. For the gnu hash index,
the time to ingest each successive partition increases with
elapsed runtime. We attribute the increase to the growth
of chaining as the hash table fills up. In contrast, the pro-
cessing time for each partition file for the two-level varies
slightly between each, but does not appear to progressively
increase. The total times (approximate) for gnu hash and
two level hash are respectively 3.5 hours and 1.5 hours. For
the two-level index, we have included timings from both a
memory mapped ramdisk and memory-mapped flash array

with memory available for the application and buffer cache
limited to 16 GB. The overhead for using flash over ramdisk
in this case is 6.2%. This small overhead suggests that the
working set size for the tow-level index ingest is smaller than
16 GB.

Previous experiments with the gnu hash map ingest have
shown that using flash storage and a limited amount of mem-
ory for buffer cache produces considerable increases in time.
Therefore, we choose not to show those as well, as they are
not comparable and would not complete in a reasonable time
for the data set we use in this experiment.

For this data set, the total storage used by the gnu hash map
index was 522 GB, including the taxonomy information. In
contrast, the two-level index used 320 GB. Based on the the
size of the hash table, we have measured 27.3 bytes per k-
mer. In contrast, the two level hash uses 8.012 to 9.53 bytes
per k-mer for this workload. The two-level hash is fixed
to 8 bytes per k-mer from the second level plus the memory
overhead of the first level, whose size varies depending on the
split parameter. Thus, as the number of k-mers increases,
that overhead becomes a less significant part of the total
storage. Given that the two-level index is more efficient in
its use of storage, we expect it to have better page reuse
than gnu hash when queried off of a flash device.

4.3 Index Lookup Performance
We examine the performance of LMAT classification using
flash memory as a store, in which we evaluate the two-level
index in two ways. First, we compare the performance of
eight index configuration. Each configuration has a different
split between prefix and suffix in the k-mer key, resulting in
varying first-level table sizes and second-level list lengths.
Second, we compare the query performance of the two-level
table with gnu hash.

These experiments make use of the DI-MMAP custom mem-
ory map handler [17] to access the memory-mapped database
files. The goal of DI-MMAP was to address the perfor-
mance gap in standard linux memory-map for large memory
mapped files. The key features of the runtime are a fixed
size page buffer, whose size is a configuration parameter;
minimal dynamic memory allocation; a simple FIFO buffer
replacement policy; and preferential caching for frequently
accessed pages. DI-MMAP superior performance to regu-
lar system mmap is measured up to 4.88× as shown in [17].
Our experiments consider 6 configurations of the DI-MMAP
buffer size from 1 GB to 32 GB.

For these experiments we consider three non-synthetic metage-
nomic samples representing a viral metagenome (SRX022172)
(0.5 GB), a human microbiome metagenome (ERR011121)
(2.5 GB) and a single species raw read ’metagenome’ (DRR000184)
(0.6 GB), taken from the NCBI sequence read archive for our
input sets (each are abbreviated to the initial three letters).
These experiments run the LMAT software V1.1 adapted to
run with the two-level index using a 11.2 billion k-mer in-
dex from five kingdoms or domains of microorganisms and
the human genome. The results of these experiments mea-
sure the input base-pairs per second (correlates with input
bytes per second) processed by the LMAT classification ap-
plication, shown on the y-axis of Figures 5 and 6. All the

first−level table size

128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

B
as

es
 p

er
 s

ec
on

d

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1GB

2GB

4GB

8GB

16GB

32GB

DI−MMAP buffer size

(a) SRX

first−level table size

128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

B
as

es
 p

er
 s

ec
on

d

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

1GB

2GB

4GB

8GB

16GB

32GB

DI−MMAP buffer size

(b) DRR

first−level table size

128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

B
as

es
 p

er
 s

ec
on

d
40000

60000

80000

100000

120000

140000

160000

1GB

2GB

4GB

8GB

16GB

32GB

DI−MMAP buffer size

(c) ERR

Figure 5: Index configuration performance select-
ing various first-level table sizes with varying DI-
MMAP buffer sizes. The table sizes are selected
based on the range of k-mer split parameters con-
sidered in section 3.3. Each subfigure is a different
input set taken from a non-synthetic metagenome,
each with different redundancy and taxonomic di-
versity characteristics.

experimental runs for LMAT classification use a single 40-
core node running 160 concurrent threads.

Figure 5 show the performance with the eight different index
configurations based on the k-mer prefix-suffix split range
we identified in Section 3.3. We use the first-level table sizes
based on those splits for the x-axis because those sizes can
be compared with the various DI-MMAP buffer sizes that
each series represents. Each subfigure uses input data from
the SRX, DRR, and ERR data sets, respectively. Note that
the performance differences among the three sets varies con-
siderably. This is due to different amounts of redundancy
affecting hit rate and taxonomic diversity affecting classifi-
cation performance. The pattern we observe with most of
the curves plotted within the figure is that performance im-
proves from the 128 MB first-level table size to 1 GB size,
then declines to the 16 GB size. Under the conditions of
the smaller size, the entire table fits comfortably into the
DI-MMAP buffer, yet the second level lists are longer on
average.

We note several exceptions to the pattern observed above.
One difference among the three input sets is that the SRX

Metagenome gnu hash (Kbp/s) two-level (Kbp/s)

SRX 322 2580
DRR 756 1710
ERR 1220 3220

Table 2: LMAT classification performance of gnu
hash and two-level index, each using a ramdisk for
reference database storage. Each row gives the in-
put metagenome. Values listed in the second two
columns are in thousands of base-pairs per second
(Kbp/s).

data set with 32 GB buffer does not have the same single
peak pattern. We have observed that the SRX data set has
a relatively high number of redundant k-mers. In contrast
to the other data sets, the hit rate becomes extremely high
for this data set with the 32GB buffer. Additionally, with a
1 GB buffer, the 1 GB table size is not the peak performer.
This result we expect because the 1 GB table cannot fit
entirely in the buffer without its pages being evicted when
requests are made for pages from the other components of
the index.

Figure 6 shows the performance of LMAT using the two-level
index compared with the gnu hash map index. We include
three index configurations for comparison. The x-axis in
each plot is the DI-MMAP buffer size. As correlating with
the previous data, the buffer size has considerable impact on
the performance of the two-level index. However, due to the
mostly random-access pattern of the gnu hash map, increas-
ing the buffer has little impact. Looking at each subfigure
for the three input data set and the optimum configuration
of the two-level, we observe speedups of 74× for SRX, 13.7×
for DRR and 8.4× for ERR over the gnu hash map index.

We present performance of gnu hash and the two-level in-
dex when performing LMAT classification using ramdisk to
store the database in Table 2. While not as large a difference
in performance between the two index approaches, the two-
level index outperforms gnu hash by approximately 2.2 to
8×. Additionally, in comparing two-level index performance
on ramdisk with the top performance measured in Figure 6,
for the SRX input set, performance using flash is approxi-
mately 2.1× slower than ramdisk, but at most 20× slower
when measuring the ERR input set. The ERR has lower
taxonomic diversity but less redundancy; thus, when run-
ning with the index stored on the ramdisk, it achieves much
higher performance with the lower latency. The higher di-
versity in SRX makes classification (aside from index lookup)
take longer, so moving to lower-latency storage does not
make as great a difference.

4.4 Discussion
The key finding for the k-mer extraction experiments is
that partitioning is necessary for improving performance,
whether it be on a single large-memory node or cluster.
Our results show that the prefix-oriented partitioning strat-
egy significantly reduces runtime for concurrent processing.
However, memory requirements appear to increase with the
input size. Thus, either larger memory nodes or larger clus-
ter allocations are needed, as we expect to see larger in-

puts as more organism are sequences and incorporated into
genome reference sets. I/O requirements of kmerPrefix-
Counter suggest a need to optimize our handling of I/O,
e.g. using parallel I/O.

Two-level ingest directly to a node with flash storage appears
to be a viable alternative to ingest using a large-memory
node. While there is not one clear choice for how to configure
the two-level index for query, we observe that configuring
the index within the range of 26 - 28 bits for k-mer prefix
appears to be favorable, and the extremes of the range do
not.

5. RELATED WORK
For metagenomic analysis, two approaches applied toward
making search more scalable include reference database size
reduction and faster database search methods. Reference
database size reduction is achieved through the use of ge-
netic markers storing only the more informative sequences
[8]. Genometa features a user interface to enable classifica-
tion using its own scheme for read mapping [4]. MetaPhlAn
uses a reduced database set and can use either either bowtie
or BLAST to map reads to its input database prior to tax-
onomic classification[15]. Marker based approaches offer ef-
ficient summarization of metagenomic contents, but only
cover a portion of the query set leaving novel and other in-
formative reads buried within the larger pool of unclassified
reads, which could require additional examination [13]. A
less lossy approach reduces sequence redundancy by storing
only the genetic differences among reference genomes. This
approach was shown to speed up BLAST and BLAT genome
database searches [9].

Faster database search methods apply large search seeds and
examples include BLAT [16], BWA [5] and other read map-
ping tools [11], but analyzing the search results remains a
challenge with some approaches selecting the lowest com-
mon ancestor of multiple matches and others using variants
of a best match selection procedure to improve rank speci-
ficity of the reported taxonomic label. Moreover, parameter
settings of the search tools can dramatically alter the out-
come of the reported label and must be considered carefully
[10].

Other projects have taken approaches to read mapping and
scaled them to cluster computing. Note that the cluster ap-
proaches alone do not attempt metagenomic classification.
mpiBLAST supports the mapping of reads utilizing clus-
ter computing resources. It partitions its reference genomes
database by creating what the authors refer to as database
fragments and also partitions the input query read into mul-
tiple segments. mpiBLAST-PIO features several parallel
I/O optimizations, namely, it offloads the formatting and
writing of results from a master process to the workers. This
feature increases the scalability of mpiBLAST to hundreds
of thousands of processors. [3]

CloudBurst makes use of the Hadoop framework to scale
read mapping to a cluster. CloudBurst uses a k-mer based
approach — well-known seed-and-extend algorithms — but
unlike LMAT, it does not index every k-mer in the reference
database[14] Crossbow is another Hadoop-based cluster read
mapper, which is based on using bowtie as the kernel that

DI−MMAP buffer size

1GB 2GB 4GB 8GB 16GB 32GB

B
as

es
 p

er
 s

ec
on

d

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06
gnu−hash

two−level−128MB

two−level−1GB

two−level−16GB

Index configuration

(a) SRX

DI−MMAP buffer size

1GB 2GB 4GB 8GB 16GB 32GB

B
as

es
 p

er
 s

ec
on

d

0

100000

200000

300000

400000

500000 gnu−hash

two−level−128MB

two−level−1GB

two−level−16GB

Index configuration

(b) DRR

DI−MMAP buffer size

1GB 2GB 4GB 8GB 16GB 32GB
B

as
es

 p
er

 s
ec

on
d

0

20000

40000

60000

80000

100000

120000

140000

160000
gnu−hash

two−level−128MB

two−level−1GB

two−level−16GB

Index configuration

(c) ERR

Figure 6: LMAT classification performance comparing the two-level index with gnu hash-map. For the index
configurations, the size indicated after two-level gives the first-level table size for the index: the two extremes
of the range of values considered and one median value. Each subfigure is a different input set taken from a
non-synthetic metagenome, each with different redundancy and taxonomic diversity characteristics.

maps the input reads against the reference sequences[7].

6. CONCLUSION AND FUTURE WORK
This paper demonstrates a scalable approach to generating
and querying very large searchable databases, starting with
reference sequences, for use with the LMAT classifier. We
have evaluated the alternative approaches to the database
ingest pipeline. This evaluation includes a comparison of k-
mer extraction using a conventional cluster or a single large
memory node. To facilitate search, we presented the design
of a two-level index data structure uniquely tuned for flash
storage and demonstrate its speed: an improvement of 8-74
times versus the use of a conventional hash table.

We can identify several improvements to make to kmerPre-
fixCounter running as an MPI cluster application. First,
we need to load-balance the partitions. The higher prefix
partitions may be combined to make better use of memory.
Second, we can consider an alternative input strategy where
the input genome reference sequences are partitioned, and
the k-mers would be routed to the appropriate destination
partition.

A potential area to explore for LMAT classification is a dis-
tributed index on a cluster. A naive partitioning based on
k-mer prefix, using the partitions from kmerPrefixCounter
would result in hotspots; thus, we need to do more intelligent
partitioning and routing of input k-mers, given that ideally,
we would split up the input reference sequences in order to
alleviate the cost of processing all the reference sequences
sequentially when stored in a single file.

We propose two potential improvements to the two-level in-
dex. First would be to investigate an ingest procedure for
two-level indexing that allows for k-mers inserted in sorted

order, and this may alter the data structures as well while
trying to maintain the same underlying principle for query.
Second would be to examine a potential parallel ingest of
the k-mer data into the two-level index.

7. ACKNOWLEDGEMENT
This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. This work
was funded in part by Laboratory Directed Research and
Development grants 33-ER-2012 and 08-ER-2011, and DOE
Office of Science grant KJ0402000-SCW1076.

8. REFERENCES
[1] J. E. Allen, S. Ames, D. Hysom, S. Garnder, and G. S.

Lloyd. Lmat: Efficient taxonomic labeling of very
large metagenomic datasets.
http://http://sourceforge.net/projects/lmat/, 2013.

[2] S. K. Ames, D. A. Hysom, S. N. Gardner, G. S.
LLoyd, M. B. Gokhale, and J. E. Allen. Scalable
metagenomic taxonomy classification using a reference
genome database. Submitted to Bioinformatics, under
review. Available upon request, 2013.

[3] A. E. Darling, L. Carey, and W. chun Feng. The
design, implementation, and evaluation of mpiblast. In
In Proceedings of ClusterWorld 2003, 2003.

[4] C. F. Davenport, J. Neugebauer, N. Beckmann,
B. Friedrich, B. Kameri, S. Kokott, M. Paetow,
B. Siekmann, M. Wieding-Drewes, M. Wienhöfer,
S. Wolf, B. Tümmler, V. Ahlers, and F. Sprengel.
Genometa - a fast and accurate classifier for short
metagenomic shotgun reads. PLoS ONE, 7(8):e41224,
08 2012.

[5] C. F. Davenport, J. Neugebauer, N. Beckmann,
B. Friedrich, B. Kameri, S. Kokott, M. Paetow,

B. Siekmann, M. Wieding-Drewes, M. Wienhöfer,
S. Wolf, B. Tümmler, V. Ahlers, and F. Sprengel.
Genometa - a fast and accurate classifier for short
metagenomic shotgun reads. PLoS ONE, 7(8):e41224,
08 2012.

[6] J. Evans. A scalable concurrent malloc(3)
implementation for freebsd. In BSDCan - The
Technical BSD Conference, 2006.

[7] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L.
Salzberg. Searching for SNPs with cloud computing.
Genome biology, 10(11):R134+, Nov. 2009.

[8] B. Liu, T. Gibbons, M. Ghodsi, T. Treangen, and
M. Pop. Accurate and fast estimation of taxonomic
profiles from metagenomic shotgun sequences. BMC
Genomics, 12(Suppl 2):S4, 2011.

[9] P.-R. Loh, M. Baym, and B. Berger. Compressive
genomics. Nat Biotech, 30(7):627–630, 2012.

[10] S. S. Mande, M. H. Mohammed, and T. S. Ghosh.
Classification of metagenomic sequences: methods and
challenges. Briefings in Bioinformatics, 2012.

[11] J. Martin, S. Sykes, S. Young, K. Kota, R. Sanka,
N. Sheth, J. Orvis, E. Sodergren, Z. Wang, G. M.
Weinstock, and M. Mitreva. Optimizing read mapping
to reference genomes to determine composition and
species prevalence in microbial communities. PLoS
ONE, 7(6):e36427, 06 2012.

[12] G. Marçais and C. Kingsford. A fast, lock-free
approach for efficient parallel counting of occurrences
of k-mers. Bioinformatics, 27(6):764–770, 2011.

[13] M. H. Mohammed, T. S. Ghosh, N. K. Singh, and
S. S. Mande. SPHINX–an algorithm for taxonomic
binning of metagenomic sequences. Bioinformatics,
27(1):22–30, 2011.

[14] M. C. Schatz. Cloudburst: highly sensitive read
mapping with mapreduce. Bioinformatics,
25(11):1363–1369, 2009.

[15] N. Segata, L. Waldron, A. Ballarini, V. Narasimhan,
O. Jousson, and C. Huttenhower. Metagenomic
microbial community profiling using unique
clade-specific marker genes. Nat Meth, 9(8):811–814,
2012.

[16] V. K. Sharma, N. Kumar, T. Prakash, and T. D.
Taylor. Fast and accurate taxonomic assignments of
metagenomic sequences using metabin. PLoS ONE,
7(4):e34030, 04 2012.

[17] B. Van Essen, H. Hsieh, S. Ames, and M. Gokhale.
DI-MMAP: A high performance memory-map runtime
for data-intensive applications. In International
Workshop on Data-Intensive Scalable Computing
Systems (DISCS-2012), Nov. 2012.

